
International Journal of Computer Trends and Technology Volume 72 Issue 6, 160-167, June 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I6P121 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Performance Benchmarking of Serverless Computing

Platforms
Dhruv Seth1, Pradeep Chintale2

1Solution Architect, Walmart Global Tech, California, USA.
2Enterprise Cloud Platform, SEI Investment Company, Pennsylvania, USA.

1Corresponding Author : er.dhruv08@gmail.com

Received: 18 April 2024 Revised: 25 May 2024 Accepted: 16 June 2024 Published: 30 June 2024

Abstract - Performance benchmarking of serverless computing platforms helps to determine the most appropriate serverless

platforms for running backend services for web applications. Performance benchmarking focuses on attributes such as the

Central Processing Unit (CPU) performance, network speed or performance, and the memory capacity of the server. The

performance benchmarking tools include micro-benchmarking and application benchmarking tools. The micro-benchmarking

tools are the focus of this paper, with Amazon Web Service (AWS) as the epitome of a cloud serverless computing platform. The

performance benchmarking tools indicate that the AWS is not perfect, but it is a reliable starting point for the development and

advancement of serverless computing platforms. Among the performance benchmarks reviewed, the ServerlessBench stood out

due to its results that showed decreased tail latency, enhanced bursty behavior, improved image fetch speed, and improved

capacity for function transfer.

Keywords - Serverless computing, Micro-benching tools, ServerlessBench, Amazon Web Service, Benchmarking.

1. Introduction
The development of the Internet of Things (IoT) has led

to an increase in demand for computing infrastructure. One of

these computing infrastructures is serverless computing,

which is a method of computing that involves the provision of

backend services to a developer or user on an as-used basis

[1]. Traditionally, backend server providers would provide a

fixed amount of computing space, which the developers

overpaid. With serverless computing, developers pay only for

the computing space used [3]. This means developers do not

have to worry about the computing infrastructure because they

are not required to pay a fixed amount for the bandwidth

needed to run the application.

Historically, developers were required to have physical

hardware resources to run a server, but this was expensive.

Afterwards, a cloud computing platform was developed that

allowed developers to rent a fixed number of servers [13].

However, the problem arose when the developers could rent

the fixed servers at a high price to ensure that the servers could

handle an increase in traffic [2]. This means developers or

companies paid for a server space that could not be used

because the spike in traffic could not be experienced within

the rented period. Consequently, cloud vendors introduced

auto-scaling to address the issue of a spike in traffic. However,

in the event of a Distributed Denial of Service (DDoS) attack,

the developer or company ends up paying much more than the

initial price.

Serverless computing, therefore, enables developers to

pay as they use it, meaning they will only pay for the services

used. Serverless computing can be compared to the use of a

data plan that charges for each byte of data used rather than a

fixed limit whereby a user may not exhaust the allocated

monthly data plan [13]. The term serverless can also be

understood in the sense that the developer does not need to

handle the server issues because the server vendor handles

them.

The advantages of serverless computing include, first,

lower costs- serverless computing is less costly than

traditional cloud computing, whereby the developers are

allocated a fixed number of servers or server space, which may

not be used within the allocated period [14]. This means the

developer pays for a service that is not used. Second,

serverless computing has simplified scalability because the

server vendors address the scaling when required. Third,

serverless computing has a simplified backend code- for

example, Function as a Service (FaaS) enables developers to

build functions that perform a single purpose independently,

such as the Application Programming Interface (API) call.

Fourth, serverless computing has a quicker turnaround than

traditional cloud computing [15]. For example, developers can

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Dhruv Seth & Pradeep Chintale / IJCTT, 72(6), 160-167, 2024

161

get around bugs by adding and modifying code quicker than

in traditional computing, which requires a complicated

deployment process.

Conducting performance benchmarking of serverless

computing platforms can help in understating and improving

the performance of serverless applications on the cloud

providers. The widely used performance benchmarking tools

include microbenchmarks, which measure the aspects that

affect serverless computing performance- this includes the

memory, CPU, and network. Some benchmarking tools are

application-centric [3]. This review, therefore, focuses on a

detailed analysis of the performance benchmarking of

serverless computing platforms. The research gap addressed

in this article is the limited research on the impact of serverless

computing platforms in the IoT. The gap between traditional

cloud computing and serverless computing platforms that are

also addressed in the article.

2. Performance Benchmarking
2.1. Background

Benchmarking in computing is used to make a

comparison in the performance of computing tools,

techniques, and computer systems [13]. A benchmark,

therefore, is a test of a system to determine its performance.

The following characteristics and criteria are required for

successful benchmarking. First, relevance- the benchmark

should be relevant and applicable to a specific computing area.

The benchmark should also consider the context of the

consumer of the results [5]. Studies show that scalability is

often a challenge for relevance- this is because scalability can

only be achieved if a benchmark runs on a broader computing

system and runs simulations with real applications. Therefore,

developers usually focus on a narrow applicable area.

Another characteristic of benchmarking is

reproducibility, which is the notion that a benchmark should

produce consistent results. However, modern software

systems are varying, which makes it difficult, if not

impossible, to achieve perfect reproducibility [1]. To improve

reproducibility, developers should run a benchmark for a

relatively long time to allow the inclusion of all the variable

behaviors. Also, developers are required to run the systems

many times, which contributes to an improvement in

consistency.

Moreover, benchmarking of computing systems requires

verifiability, which is the ability to use the benchmark for

verification purposes Verification of benchmark results helps

in improving the trustfulness of the benchmark results [20].

This means developers must provide detailed information

about the computing system to enable the provision of

accurate, verifiable data. Lastly, benchmarking should be fair-

this means artificial constraints should not interfere with the

comparison of the systems on their metrics [13]. To improve

fairness, developers should use consensus to design

benchmarks. A panel of experts should come up with the

benchmarks instead of sourcing them from individual parties.

This section covers the application characteristics of a

serverless application and examines the number of functions

that an application is built and the cloud services that the

application runs. Currently, AWS Lambda dominates the

platform for serverless applications. Currently, about 80

percent of the developers have adopted the AWS Lambda

[13]. Therefore, AWS Lambda is widely studied because it is

the first serverless vendor.

The traffic patterns of a serverless function determine the

workload characteristics. For example, the number of times

that functions run and the volume of the workload. For

example, if the workload is bursty, the functions will take

considerable time to run. If there is a high volume per request,

the resource use will be stretched. The researchers surveyed

67% of the serverless functions and found that they are

running short, which means they are not able to handle the data

volume per request efficiently [13]. The documented running

time is milliseconds or seconds

3. Serverless Benchmarking
3.1. Micro-Benchmarking

Micro-benchmarking involves the use of a single function

to measure the individual characteristics of a server function.

These characteristics or attributes include the Central

Processing Unit (CPU), memory, disk Input-Output (I/O), and

network performance [16]. For instance, a single Amazon

Web Services (AWS) Lambda function can be used to

implement a handler that generates a parameter and calculates

the latency using a floating point [13]. Consequently, the

micro-benchmark helps a developer determine the latency for

an operation that consumes too much of the CPU resources.

Moreover, a function-bench is also a micro-bench function

that uses a single function to download and upload objects to

measure the performance of the network.

3.2. Application Benchmarking

Application benchmarking involves the use of

applications to measure the end-to-end response time on

serverless components. For instance, the use of an e-

commerce benchmark such as the BeFaaS to implement a

webshop [16]. Furthermore, an Image Processing application

can also form an application benchmark- this involves

fetching an image from a storage area and applying varied

effects on it then uploading it to another storage area. The

latency time is calculated to determine the effectiveness of the

image upload, filtering, and sharing on the serverless storage.

3.3. Benchmarkers in Serverless Computing

Serverless computing requires standardization of

benchmarking tests to make them reducible and automatic.

The following are the core elements for the serverless

benchmark frameworks: first, built-in benchmarks- these are

Dhruv Seth & Pradeep Chintale / IJCTT, 72(6), 160-167, 2024

162

used to demonstrate features of the tool and to provide

examples of creating and integrating benchmarks. Second, the

deployment tool is used for making a standard benchmark to

be used by network cloud providers. Lastly, the load

generation automation which helps developers in load

configuration [6].

The SPEC-RG CLOUD created the serverless

benchmarker (SB) to arrange serverless benchmarking that is

reducible. In this regard, the users of a serverless benchmark

can design a workload regardless of the complexity of the

commands executed [8]. The following figure (1) shows an

overview of high-level serverless benchmarker architecture.

Fig. 1 An overview of a high-level serverless benchmarker architecture [13]

Fig. 2 Step-by-step workflow in the SB [13]

AWS Benchmark App Azure Benchmark App

Deployment 1

Cloud Providers

Invocation

Workload Profile X

Trace

Downloading

3

Tracing Data

Trace

Processing

4

2

Step 1: Initialization

(sb init)

Step 2: Login

(sb login)
Step 3: Deployment

(sb prepare)

Step 6: Traces

Processing (sb

analyze_traces)

Step 5: Traces

Downloading (sb

get_traces)

Step 4: Invocation

(sb invoke)

Step 7: Cleaup

 (sb cleanup)

Dhruv Seth & Pradeep Chintale / IJCTT, 72(6), 160-167, 2024

163

The figure 1 has four main features: deployment

component, cloud providers, traces, invocation, and trace

processing. The function of the deployment feature is to

automate the benchmark apps- from the figure, examples of

the deployment apps include the Amazon Web Service (AWS)

app and the Azure Benchmark app. The serverless benchmark

creates reproducible deployment using Docker, a

containerization technology- this is achieved by diverting the

dependencies required for the deployment of the application

benchmark [13]. The serverless benchmark, through Docker

technology, can also mount application codes automatically,

thus simplifying the deployment.

The function of the invocation component is to provide

an interface required to configure the workload and generate

the load. The serverless benchmark enables the generation of

the load automatically by integrating the K6 and a load testing

tool. The tool undergoes the optimization process to invoke

less consumption of resources and generate a good or

enjoyable experience for the developer [12].

The function of the trace downloading feature is to

provide a template and integrate tracing tools to enhance the

downloading of data in the cloud providers. The trace

downloading ensures that the required software development

kit (SDK) and the application programming interface (API)

are downloaded. Finally, the trace processing features are used

to handle custom logic [21].

The figure 2 shows a step-by-step workflow in the SB. In

Figure 2, the step-by-step workflow in the serverless

benchmark is illustrated in conjunction with the command line

interface. During the initialization phase, the serverless

benchmark installs the required features. The login phase

involves user authentication. The deployment phase involves

the preparation of the serverless benchmark for deployment

[19]. The deployment of the benchmark leads to the invocation

step, followed by data tracing and downloading then the

serverless benchmark analyzes the traces. Finally, the

serverless benchmark initiates data cleanup.

The first step is the initialization which involves the

serverless benchmark- this involves the initialization of

default configuration and packages that had been pre-

installed. When required, developers can use the initialization

step to install custom packages [18]. However, developers

should execute this step only if they do not see any change in

the dependent packages.

The second step is the log in whereby the serverless

benchmark authenticates the users in the cloud platforms. This

involves temporary storage of the credentials. For example,

the Amazon Web Service (AWS) and the Azure login are

supported with a single sign-on (SSO) out-of-box. This means

users can log in to several applications with one set of

credentials.

However, since the credentials are supported out-of-box,

they can be accessed by other unauthorized users. Therefore,

during the serverless benchmarking process, the SSO ensures

that the authentication process for users is streamlined. A

perfect example of SSO would be once a user logs into Gmail,

and the user is automatically authenticated into other Google

services such as AdSense and Google Analytics [15]. Back to

the serverless benchmarking activity in the second step, the

Amazon Web Service credentials expire in twelve hours,

while the Azure logins expire in 60 minutes. Therefore,

serverless benchmarking should consider the login expiration

of each application and perform the benchmarking process

before the expiry of the session.

The third step is the development which involves the

deployment configuration of the benchmark application.

However, the technologies used can lead to different

configuration sessions. For example, the runtime can be

different for different benchmark applications. Also, different

infrastructures can lead to different run time. In step three, the

serverless benchmark enables the developer to build Docker

images, and container loading with variables [17].

The fourth step is invocation, which involves the K6

configuration- this is a default configuration file that allows a

developer to edit or create a new file. The K6 configuration

often overrides the configuration flag options. The fifth step is

to trace downloading- this involves the standardization of the

operation of download traces from the available cloud

providers. The default implementation exists, but the

differences in the instrumentation and application can force

the users or developers to modify the downloading logic. For

example, for the Amazon Web Service (AWS), developers

unify the tracing data into a single JavaScript Object Notation

(JSON) file, which is an effective way of transmitting data in

web applications. For instance, the JSON file enables a user to

send data from the server to the client. A user requires AWS

X-Ray SDK to download X-Ray traces. This is because the

AWS X-Ray SDK is used to fetch the JSON file. In the

implementation of the Azure app, developers trace data

through three categories- this is request, trace, and

dependences [11]. Fetching data through Azure is

implemented in various ways- this includes the Continuous

Export and the representational state transfer (REST) API.

While the web APIs rely on multiple communication and the

JSON, REST APIs apply the hypertext transfer protocol

(HTTP) to send and receive data.

The fifth step is the traces processing which involves pre-

processing of data from step 4 (traces downloading). In step 5,

the final trace breakdown is generated and extracted before

being applied to analysis during post-experiments. The sixth

step is the cleanup which involves the destruction of all the

resources in the cloud platform.

Dhruv Seth & Pradeep Chintale / IJCTT, 72(6), 160-167, 2024

164

4. Analysis of the Benchmarking Tools
The reviewed studies show that the current serverless

computing does not meet the required demand. For example,

the run time is relatively low and the data volume requests are

overwhelming. This calls upon software developers to

consider more efficient avenues. For example, studies show

the constraint of serverless computing in the manner that the

lifetimes of the functions are limited and the hardware

resources are not specialized. This means developers are

gambling with serverless computing and benchmarking would

help in improving the performance of these servers. Also,

research indicates that the processing of data in serverless

platforms is inefficient- this is attributed to the input-output

problems that arise from the low network bandwidth and low

Central Processing Unit (CPU) storage.

In addition, research shows that wrong policies hinder the

full adoption of serverless computing platforms. For example,

the policies lead to the incorporation of request queuing that

is inadequate. Consequently, several serverless application

developers have resorted to the measurement of the

performance of the serverless computing platforms. The

performance measures include cold start latency [2], lifetime

of the function [6], idle time reached before the server shuts

down [7], and the usage of the Central Processing Unit [11].

However, since the experiments did not have control over

other circumstances or variables, the results cannot be

replicated and are therefore irrelevant in the benchmarking of

the current serverless computing platforms.

Furthermore, studies show that breadth is an issue of

concern in the s computing platforms. For instance, the study

in [1] examined the function images of up to 15MB, while the

study in [13] went up to 230MB and found different results.

Similarly, in [14], the researchers evaluated the delay in the

image fetch function for images of up to 70MB and found a

significant image delay in serverless bench. Moreover, there

is a lack of depth for the analysis of the serverless bench inter-

function transmission latency [13]. In the previous studies, the

payloads of up to 50KB are considered normal, which is

inconsistent with other studies which considered normal

payloads to be 1GB. [14].

In another experiment, the researchers explored cold

latency, network, and CPU performance [2]. Researchers in

[13] used a similar methodology but focused on tail latency,

variability in the upload of images of various sizes, and

serverless bench behavior. While the experiments were

identical, the authors in [13] failed to replicate the same results

as in [3], indicating that the previous studies are outdated. For

example, the experiment in [17] showed an increase in the

slowdown of CPU in Amazon Web Service (AWS) since the

year 2018 [18]. The slowness of the CPU performance in the

Amazon Web Service is attributed to the update in vendor

policies. The outdated of some research papers in the

serverless computing platforms is reflected in the tenancy of a

virtual machine (VM), which is not currently applied because

of the exclusion of the VM co-residency from the AWS. This

means the vendors assigned only one function to the micro-

virtual machine [19].

Fig. 3 Server-level overhead of FaaSProfiler [12]

35% decrease in IPC

due to interference

20x MPKI for

short functions

Up to 20x

slowdown

S
er

v
er

(t
h

is
 p

ap
er

)

P
la

tf
o

rm

M
an

ag
em

en
t

(p
ri

o
r

w
o

rk
)

6x variation due to

invocation pattern

>10x exec time for

short functions

(500ms cold start)

Network

Scheduling

Queueing

Interference

Memory BW

Branch MPKI

Cold Start

Container

Native

Execution

Dhruv Seth & Pradeep Chintale / IJCTT, 72(6), 160-167, 2024

165

The previous studies’ methodologies focused on end-to-

end issues. In [20], the function-as-a-service profiler (FaaS) is

emphasized, which is an open-source. This means it is

possible to perform a higher degree of introspection and

interference with inter-function [8]. The studies also found

consistent results concerning the cold starts in functions and

slowdowns in containers.

The Figure 3 illustrates the server-level overhead of

FaaSProfiler. In Figure 3 above, the serverless benchmark

shows inter-function interference, which negatively affects its

performance. In addition, the figure under-performance of

other parameters in the serverless benchmark. For example,

there was a 35% decrease in the Inter-Process Communication

(IPC), a 6 times variation in the memory bandwidth due to the

invocation pattern, a 20 times Managed Public Key

Infrastructure (MPKI) for short functions, more than 10 times

execution time in the cold start for the short functions, and up

to 20 times slowdown in container performance [13].

In [16], the researchers considered statistical accuracy

like other studies that prioritized statistical soundness. For

example, LANCET is a self-correcting tool used to measure

latency [15]. LANCET employs statistical measuring

techniques such as Pearson and Anderson Darling Test [16].

Other tools, such as the ServerlessBench [17], offer insights

into how the developer can derive economic benefits from the

serverless computing platform.

The researchers in [13] used a micro-bench framework to

examine the aspects of the function-as-a-service (FaaS)

platform. However, a developer can adopt the BeFaaS which

is specialized and has in-built benchmarks such as the IoT

application and e-commerce. Another applicable framework

is the SeBS, which includes image recognition engines.

Nonetheless, the platforms that emphasize the use of visuals

and the analysis of programming languages include the

FaaSDom, which is built in and supports seven languages.

However, since the FaaSDom outsources its latency from the

wrk2, there is a compromise on the precision [15].

WRK2 is a concurrency model that distributes the number

of connections evenly. This means the number of CPUs should

equal the number of connections.

For example, thread 1 is created for clients 0, 1, and 2.

Thread 2 is created for clients 3, 4, and 5.

In [13], the authors examined the benchmarking tools

against their characteristics and summarized them as shown in

the figure below.

Figure 5 above shows the micro-benching contributions

to the serverless computing platform. The ticks where the

benchmarking tool is effective, while the x indicates where the

benchmarking tool is ineffective.

Benchmark-

ing Tool

Tail

La-

tency

Bursty

Behav-

ior

Image

Fetch

Func-

tion

Trans-

fer

Research by

[13] ✓
500

reqs.
230MB 1GB

Serverless-

Bench [1] ✓ X 72.6MB 50KB

FaaSprofile

[4] X X X X

FaaSDom

[19] X X X X

BeFaaS [13] X X X X

Function-

Bench [17]
X X X X

Fig. 4 Micro-benching contributions to the serverless computing

platform

The review of existing literature on the performance

benchmarking of serverless computing platforms shows a lack

of tail latency in most research papers. Also, the review of the

literature shows that the experiments are too narrow and lack

the statistical soundness to make informed decisions about the

effectiveness of the benchmarking tools. In [13], the

researchers analyzed tail latency on 99th percentile server

latencies. The bursty behavior examined the workloads

considered bursty, but the researchers did not consider the

incidences of concurrent requests. The researchers also

analyzed the image delay by examining the cold start

performance. Finally, the study examined a function transfer

to determine the transfer speeds in serverless computing

platforms.

In [8], they evaluated the performance of the serverless

platforms of Amazon, Google, Microsoft, and IBM using a

benchmarking test suite. The authors developed seven tests to

benchmark the cloud serverless computing platforms- this

includes (1) scalability, also known as latency and throughput,

(2) memory, (3) CPU performance, (4) payload size, (5)

programming language, (6) resource management and (7) the

use of platform overhead. The researchers developed software

that deployed the test code and concluded that the benchmark

tools help developers identify the serverless aspects that need

improvement.

Analytical performance models can be used for

benchmarking the performance of serverless computing

platforms [13]. The primary purpose of these analytical

models is to determine the strengths and weaknesses of the

serverless computing platforms. For example, the developers

can determine whether the serverless computing platform can

Dhruv Seth & Pradeep Chintale / IJCTT, 72(6), 160-167, 2024

166

handle the volume of requests submitted or the time taken for

a function to be executed. While a serverless computing

platform cannot meet 100% of the strengths required, it can

have enough tools to handle a peak in traffic. Furthermore,

serverless computing platforms are flexible in the manner that

their resources can increase to meet increased demand.

The greatest strength of serverless computing platforms is

the ability to detect the workload and deploy the required

resources. This provides a better cost and performance for the

user, unlike traditional cloud computing, which offers a fixed

amount of space at a certain cost. The researchers also

emphasized the need for users or developers to have extensive

knowledge of serverless computing platforms to execute

deployments effectively. The study showed that the analytical

performance model can calculate the response time, chances

of cold start, and the number of functions in a steady state.

5. Summary of the Findings
Cloud serverless computing is a growing technology that

has not yet been embraced by a majority of cloud vendors,

developers, or users. The serverless computing platform

works on the idea that the developers do not need to pay for

the cloud computing services they do not use. For example,

the purchase of the bandwidth that one does not use is not only

a waste of resources but also a waste of time. Therefore, the

cloud serverless computing platform offers developers

solutions by handling the backend services depending on the

resources needed. This means developers will pay only for the

resources used. This means the payment for the serverless

computing platform will vary depending on the needs of the

users. For example, in case there is a traffic increase to a web

application, the serverless cloud computing platform will

adjust to accommodate the traffic rather than shouting down

as is the case of the cloud server computing platforms.

The advantages of cloud serverless computing platforms

include: 1) cost efficiency- this means the developer or

company will pay for the resources used instead of the

resources purchased, as is the case for the traditional cloud

server computing platforms. Also, the developer saves the cost

of hosting the backend because there is no payment for the

server space that is idle. 2) the cloud serverless computing

platform has operational efficiency by simplifying him

management of tasks. 3) The cloud serverless computing

platforms are scalable. The disadvantages of serverless

computing, however, include performance issues whereby a

function enters a dormant state when it is not used for a certain

period. Another disadvantage of serverless cloud computing

includes limited flexibility and control due to the used

infrastructure, and Operating System.

The review of literature addressed the problems or

disadvantages of cloud serverless computing platforms by use

of benchmarking tools. Several benchmarking tools were

identified. This includes micro-benchmarking and application

benchmarking tools [12]. Micro-benchmarking tools focus on

serverless attributes such as the CPU, memory, disk I/O, and

network performance [13]. The application benchmarkers

include the BeFaaS.

6. Conclusion
The analysis of benchmarking tools shows that serverless

computing is far from meeting the required demand. While

serverless computing is cost-effective, it is replete with

performance problems which include low run time and

overwhelming data volume requests. Moreover, the I/O

problems contribute to the inefficiency in the processing of

data by serverless computing platforms. However, the

ServeerlessBench in [13] showed that the cloud serverless

computing platform is effective due to the reduced tail latency,

enhanced bursty behavior whereby the server can handle 500

requests in a millisecond, a maximum image fetch of 230MB,

and the function transfer of 1GB. The findings indicate that

for developers to optimize the performance of serverless

computing platforms, they must have the technical knowledge

of the architecture and the performance benchmarks required

to test the reliability of the platform. The serverless computing

platform is the future of computing. It is only a matter of time

before all developers will migrate from the traditional cloud

servers to the serverless computing framework.

References
[1] Jithin Jude Paul, “Serverless Data Platforms,” Distributed Serverless Architectures on AWS, pp. 75–93, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[2] Maddie Stigler, “Understanding Serverless Computing,” Beginning Serverless Computing, pp. 1–14, 2017. [CrossRef] [Google Scholar]

[Publisher Link]

[3] N. Saravana Kumar, and Samy S. Selvakumara, “Serverless Computing Platforms Performance and Scalability Implementation Analysis,”

2022 International Conference on Computer, Power and Communications (ICCPC), Chennai, India, pp. 598 – 602, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[4] Victor Juan Exposito Jimenez, and Herwig Zeiner, “Serverless Cloud Computing: A Comparison Between ‘Function as a Service’

Platforms,” 7th International Conference on Information Technology Convergence and Services, Vol. 5, 2018. [CrossRef] [Google

Scholar]

https://doi.org/10.1007/978-1-4842-9159-7_5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Jithin+Jude+Paul%2C+Serverless+Data+Platforms&btnG=
https://link.springer.com/chapter/10.1007/978-1-4842-9159-7_5
https://doi.org/10.1007/978-1-4842-3084-8_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Maddie+Stigler%2C+Understanding+Serverless+Computing&btnG=
https://link.springer.com/chapter/10.1007/978-1-4842-3084-8_1
https://doi.org/10.1109/ICCPC55978.2022.10072137
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Serverless+computing+platforms+performance+and+Scalability+Implementation+Analysis&btnG=
https://ieeexplore.ieee.org/document/10072137
https://doi.org/10.5121/csit.2018.80702
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Serverless+Cloud+Computing%E2%80%AF%3A+A+comparison+between+%E2%80%98function+as+a+service%E2%80%99+platforms&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Serverless+Cloud+Computing%E2%80%AF%3A+A+comparison+between+%E2%80%98function+as+a+service%E2%80%99+platforms&btnG=

Dhruv Seth & Pradeep Chintale / IJCTT, 72(6), 160-167, 2024

167

[5] Francisco Carpio, Marc Michalke, and Admela Jukan, “Engineering and Experimentally Benchmarking a Serverless Edge Computing

System,” 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021, pp. 1-6. [CrossRef] [Google Scholar]

[Publisher Link]

[6] Karim Djemame, Daniel Datsev and Vasilios Kelefouras, “Evaluation of Language Runtimes in Open-source Serverless Platforms,”

Proceedings of the 12th International Conference on Cloud Computing and Services Science, vol. 1, pp. 123-132, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[7] Jorn Kuhlenkamp et al., “Benchmarking Elasticity of FaaS Platforms as a Foundation for the Objective-Driven Design of Serverless

Applications,” SAC ’20: Proceedings of the 35th Annual ACM Symposium on Applied Computing, New York, USA, pp. 1576-1585, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[8] Pérez González, Alfonso María, “Advanced Elastic Platforms for High Throughput Computing on Container-Based and Serverless

Infrastructures,” PhD Thesis, Polytechnic University of Valencia, pp. 1-161, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[9] Sumanth Tatineni, “Performance Evaluation of Serverless Computing Platforms in Cloud Environments,” International Journal of Science

and Research (IJSR), vol. 12, no. 11, pp. 1013–1020, 2023. [CrossRef]

[10] Nima Mahmoudi, and Hamzeh Khazaei, “Temporal Performance Modelling of Serverless Computing Platforms,” Proceedings of the 2020

Sixth International Workshop on Serverless Computing, pp. 1-6, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[11] Junfeng Li et al., “Understanding Open Source Serverless Platforms,” Proceedings of the 5th International Workshop on Serverless

Computing, pp. 37-42, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[12] D.M. Naranjo Delgado, “Serverless Computing Strategies on Cloud Platforms,” Thesis, 2017. [CrossRef] [Google Scholar] [Publisher

Link]

[13] Horacio Martins, Filipe Araujo, and Paulo Rupino da Cunha, “Benchmarking Serverless Computing Platforms,” Journal of Grid

Computing, vol. 18, pp. 691–709, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[14] Junfeng Li et al., “Understanding Open Source Serverless Platforms: Design Consideration and Performace,” Proceedings of the 5th

International Workshop on Serverless Computing, pp. 37-42, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[15] Bernd Strehl, The Largest Benchmark of Serverless Providers, Medium, 2018. [Online]. Available: https://medium.com/elbstack/the-

largest-benchmark-of-serverless-providers-ac19b55750f4

[16] SPCL/Serverless-Benchmarks, SeBS: Serverless Benchmarking Suite. [Online]. Available: https://github.com/spcl/serverless-

benchmarks

[17] Hima Govind, and Horacio GonzaleznVelez, “Benchmarking Serverless Workloads on Kubernetes,” 2021 IEEE/ACM 21st International

Symposium on Cluster, Cloud and Internet Computing (CCGrid), 2021. doi:10.1109/ccgrid51090.2021.00085 [CrossRef] [Google

Scholar] [Publisher Link]

[18] Devesh Tiwari, “Bringing Serverless Computing to the HPC Community,” Proceedings of the 2nd Workshop on High Performance

Serverless Computing, pp. 1-2, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[19] Mubashra Sadaqat, Mary Sánchez-Gordón, and Ricardo Colomo-Palacios, “Benchmarking Serverless Computing: Performance and

Usability,” Journal of Information Technology Research, vol. 15, no. 1, 2022. [CrossRef] [Publisher Link]

[20] Samuel Ginzburg, and Michael J. Freedman, “Serverless Isn’t Server-less,” Proceedings of the 2020 Sixth International Workshop on

Serverless Computing, pp. 43-48, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[21] Surya Chaitanya Palepu et al., “Benchmarking the Data Layer Across Serverless Platforms,” Proceedings of the 2nd Workshop on High

Performance Serverless Computing, pp. 3-7, 2022. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/GLOBECOM46510.2021.9685235
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Engineering+and+experimentally+benchmarking+a+serverless+edge+computing+system&btnG=
https://ieeexplore.ieee.org/abstract/document/9685235
https://doi.org/10.5220/0010983000003200
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluation+of+language+runtimes+in+open-source+serverless+platforms&btnG=
https://eprints.whiterose.ac.uk/186083/
https://doi.org/10.1145/3341105.3373948
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Benchmarking+elasticity+of+Faas+platforms+as+a+foundation+for+the+objective-driven+design+of+serverless+applications&btnG=
https://dl.acm.org/doi/abs/10.1145/3341105.3373948
https://doi.org/10.4995/thesis/10251/146365
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Advanced+elastic+platforms+for+high+throughput+computing+on+container-based+and+serverless+infrastructures&btnG=
https://riunet.upv.es/handle/10251/146365
https://dx.doi.org/10.21275/SR231113053205
https://doi.org/10.1145/3429880.3430092
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Temporal+performance+modelling+of+Serverless+Computing+Platforms&btnG=
https://dl.acm.org/doi/abs/10.1145/3429880.3430092
https://doi.org/10.1145/3366623.3368139
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Understanding+open+source+serverless+platforms&btnG=
https://dl.acm.org/doi/abs/10.1145/3366623.3368139
https://doi.org/10.4995/Thesis/10251/160916
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Serverless+Computing+Strategies+on+Cloud+Platforms&btnG=
https://riunet.upv.es/handle/10251/160916
https://riunet.upv.es/handle/10251/160916
https://doi.org/10.1007/s10723-020-09523-1
https://scholar.google.com/scholar?q=Benchmarking+serverless+computing+platforms&hl=en&as_sdt=0,5
https://link.springer.com/article/10.1007/s10723-020-09523-1
https://doi.org/10.1145/3366623.3368139
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Understanding+open+source+serverless+platforms&btnG=
https://dl.acm.org/doi/abs/10.1145/3366623.3368139
https://medium.com/elbstack/the-largest-benchmark-of-serverless-providers-ac19b55750f4
https://medium.com/elbstack/the-largest-benchmark-of-serverless-providers-ac19b55750f4
https://github.com/spcl/serverless-benchmarks
https://github.com/spcl/serverless-benchmarks
https://doi.org/10.1109/CCGrid51090.2021.00085
https://scholar.google.com/scholar?q=Benchmarking+serverless+workloads+on+kubernetes&hl=en&as_sdt=0,5
https://scholar.google.com/scholar?q=Benchmarking+serverless+workloads+on+kubernetes&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/abstract/document/9499690
https://doi.org/10.1145/3526060.3536352
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bringing+serverless+computing+to+the+HPC+Community&btnG=
https://dl.acm.org/doi/abs/10.1145/3526060.3536352
https://doi.org/10.4018/JITR.299374
https://www.igi-global.com/gateway/article/299374
https://doi.org/10.1145/3429880.3430099
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Serverless+isn%E2%80%99t+server-less&btnG=
https://dl.acm.org/doi/abs/10.1145/3429880.3430099
https://doi.org/10.1145/3526060.3535460
https://scholar.google.com/scholar?q=Benchmarking+the+data+layer+across+serverless+platforms&hl=en&as_sdt=0,5
https://dl.acm.org/doi/abs/10.1145/3526060.3535460

