
International Journal of Computer Trends and Technology                                           Volume 72 Issue 6, 160-167, June 2024 

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I6P121                                                   © 2024 Seventh Sense Research Group® 

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article  

 

Performance Benchmarking of Serverless Computing 

Platforms 
Dhruv Seth1, Pradeep Chintale2  

 

1Solution Architect, Walmart Global Tech, California, USA. 
2Enterprise Cloud Platform, SEI Investment Company, Pennsylvania, USA. 

1Corresponding Author : er.dhruv08@gmail.com 

 

Received: 18 April 2024                      Revised: 25 May 2024                         Accepted: 16 June 2024                         Published: 30 June 2024 

 

Abstract - Performance benchmarking of serverless computing platforms helps to determine the most appropriate serverless 

platforms for running backend services for web applications. Performance benchmarking focuses on attributes such as the 

Central Processing Unit (CPU) performance, network speed or performance, and the memory capacity of the server. The 

performance benchmarking tools include micro-benchmarking and application benchmarking tools. The micro-benchmarking 

tools are the focus of this paper, with Amazon Web Service (AWS) as the epitome of a cloud serverless computing platform. The 

performance benchmarking tools indicate that the AWS is not perfect, but it is a reliable starting point for the development and 

advancement of serverless computing platforms. Among the performance benchmarks reviewed, the ServerlessBench stood out 

due to its results that showed decreased tail latency, enhanced bursty behavior, improved image fetch speed, and improved 

capacity for function transfer.  
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1. Introduction 
The development of the Internet of Things (IoT) has led 

to an increase in demand for computing infrastructure. One of 

these computing infrastructures is serverless computing, 

which is a method of computing that involves the provision of 

backend services to a developer or user on an as-used basis 

[1]. Traditionally, backend server providers would provide a 

fixed amount of computing space, which the developers 

overpaid. With serverless computing, developers pay only for 

the computing space used [3]. This means developers do not 

have to worry about the computing infrastructure because they 

are not required to pay a fixed amount for the bandwidth 

needed to run the application.  

 

Historically, developers were required to have physical 

hardware resources to run a server, but this was expensive. 

Afterwards, a cloud computing platform was developed that 

allowed developers to rent a fixed number of servers [13]. 

However, the problem arose when the developers could rent 

the fixed servers at a high price to ensure that the servers could 

handle an increase in traffic [2]. This means developers or 

companies paid for a server space that could not be used 

because the spike in traffic could not be experienced within 

the rented period. Consequently, cloud vendors introduced 

auto-scaling to address the issue of a spike in traffic. However, 

in the event of a Distributed Denial of Service (DDoS) attack, 

the developer or company ends up paying much more than the 

initial price.  

 

Serverless computing, therefore, enables developers to 

pay as they use it, meaning they will only pay for the services 

used. Serverless computing can be compared to the use of a 

data plan that charges for each byte of data used rather than a 

fixed limit whereby a user may not exhaust the allocated 

monthly data plan [13]. The term serverless can also be 

understood in the sense that the developer does not need to 

handle the server issues because the server vendor handles 

them.  

 

The advantages of serverless computing include, first, 

lower costs- serverless computing is less costly than 

traditional cloud computing, whereby the developers are 

allocated a fixed number of servers or server space, which may 

not be used within the allocated period [14]. This means the 

developer pays for a service that is not used. Second, 

serverless computing has simplified scalability because the 

server vendors address the scaling when required. Third, 

serverless computing has a simplified backend code- for 

example, Function as a Service (FaaS) enables developers to 

build functions that perform a single purpose independently, 

such as the Application Programming Interface (API) call. 

Fourth, serverless computing has a quicker turnaround than 

traditional cloud computing [15]. For example, developers can 
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get around bugs by adding and modifying code quicker than 

in traditional computing, which requires a complicated 

deployment process.   

 

Conducting performance benchmarking of serverless 

computing platforms can help in understating and improving 

the performance of serverless applications on the cloud 

providers. The widely used performance benchmarking tools 

include microbenchmarks, which measure the aspects that 

affect serverless computing performance- this includes the 

memory, CPU, and network. Some benchmarking tools are 

application-centric [3]. This review, therefore, focuses on a 

detailed analysis of the performance benchmarking of 

serverless computing platforms. The research gap addressed 

in this article is the limited research on the impact of serverless 

computing platforms in the IoT. The gap between traditional 

cloud computing and serverless computing platforms that are 

also addressed in the article.  

 

2. Performance Benchmarking  
2.1. Background 

Benchmarking in computing is used to make a 

comparison in the performance of computing tools, 

techniques, and computer systems [13]. A benchmark, 

therefore, is a test of a system to determine its performance. 

The following characteristics and criteria are required for 

successful benchmarking. First, relevance- the benchmark 

should be relevant and applicable to a specific computing area. 

The benchmark should also consider the context of the 

consumer of the results [5]. Studies show that scalability is 

often a challenge for relevance- this is because scalability can 

only be achieved if a benchmark runs on a broader computing 

system and runs simulations with real applications. Therefore, 

developers usually focus on a narrow applicable area.  

 

Another characteristic of benchmarking is 

reproducibility, which is the notion that a benchmark should 

produce consistent results. However, modern software 

systems are varying, which makes it difficult, if not 

impossible, to achieve perfect reproducibility [1]. To improve 

reproducibility, developers should run a benchmark for a 

relatively long time to allow the inclusion of all the variable 

behaviors. Also, developers are required to run the systems 

many times, which contributes to an improvement in 

consistency.  

 

Moreover, benchmarking of computing systems requires 

verifiability, which is the ability to use the benchmark for 

verification purposes Verification of benchmark results helps 

in improving the trustfulness of the benchmark results [20]. 

This means developers must provide detailed information 

about the computing system to enable the provision of 

accurate, verifiable data. Lastly, benchmarking should be fair- 

this means artificial constraints should not interfere with the 

comparison of the systems on their metrics [13]. To improve 

fairness, developers should use consensus to design 

benchmarks. A panel of experts should come up with the 

benchmarks instead of sourcing them from individual parties.  

 

This section covers the application characteristics of a 

serverless application and examines the number of functions 

that an application is built and the cloud services that the 

application runs. Currently, AWS Lambda dominates the 

platform for serverless applications. Currently, about 80 

percent of the developers have adopted the AWS Lambda 

[13]. Therefore, AWS Lambda is widely studied because it is 

the first serverless vendor.  

 

The traffic patterns of a serverless function determine the 

workload characteristics. For example, the number of times 

that functions run and the volume of the workload. For 

example, if the workload is bursty, the functions will take 

considerable time to run. If there is a high volume per request, 

the resource use will be stretched. The researchers surveyed 

67% of the serverless functions and found that they are 

running short, which means they are not able to handle the data 

volume per request efficiently [13]. The documented running 

time is milliseconds or seconds 

 

3. Serverless Benchmarking 
3.1. Micro-Benchmarking 

Micro-benchmarking involves the use of a single function 

to measure the individual characteristics of a server function. 

These characteristics or attributes include the Central 

Processing Unit (CPU), memory, disk Input-Output (I/O), and 

network performance [16]. For instance, a single Amazon 

Web Services (AWS) Lambda function can be used to 

implement a handler that generates a parameter and calculates 

the latency using a floating point [13]. Consequently, the 

micro-benchmark helps a developer determine the latency for 

an operation that consumes too much of the CPU resources. 

Moreover, a function-bench is also a micro-bench function 

that uses a single function to download and upload objects to 

measure the performance of the network.  

 

3.2. Application Benchmarking 

Application benchmarking involves the use of 

applications to measure the end-to-end response time on 

serverless components. For instance, the use of an e-

commerce benchmark such as the BeFaaS to implement a 

webshop [16]. Furthermore, an Image Processing application 

can also form an application benchmark- this involves 

fetching an image from a storage area and applying varied 

effects on it then uploading it to another storage area. The 

latency time is calculated to determine the effectiveness of the 

image upload, filtering, and sharing on the serverless storage. 

 

3.3. Benchmarkers in Serverless Computing 

Serverless computing requires standardization of 

benchmarking tests to make them reducible and automatic. 

The following are the core elements for the serverless 

benchmark frameworks: first, built-in benchmarks- these are 
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used to demonstrate features of the tool and to provide 

examples of creating and integrating benchmarks. Second, the 

deployment tool is used for making a standard benchmark to 

be used by network cloud providers. Lastly, the load 

generation automation which helps developers in load 

configuration [6].  

The SPEC-RG CLOUD created the serverless 

benchmarker (SB) to arrange serverless benchmarking that is 

reducible. In this regard, the users of a serverless benchmark 

can design a workload regardless of the complexity of the 

commands executed [8]. The following figure (1) shows an 

overview of high-level serverless benchmarker architecture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 An overview of a high-level serverless benchmarker architecture [13] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Step-by-step workflow in the SB [13] 
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The figure 1 has four main features: deployment 

component, cloud providers, traces, invocation, and trace 

processing. The function of the deployment feature is to 

automate the benchmark apps- from the figure, examples of 

the deployment apps include the Amazon Web Service (AWS) 

app and the Azure Benchmark app. The serverless benchmark 

creates reproducible deployment using Docker, a 

containerization technology- this is achieved by diverting the 

dependencies required for the deployment of the application 

benchmark [13]. The serverless benchmark, through Docker 

technology, can also mount application codes automatically, 

thus simplifying the deployment.  

 

The function of the invocation component is to provide 

an interface required to configure the workload and generate 

the load. The serverless benchmark enables the generation of 

the load automatically by integrating the K6 and a load testing 

tool. The tool undergoes the optimization process to invoke 

less consumption of resources and generate a good or 

enjoyable experience for the developer [12].  

 

The function of the trace downloading feature is to 

provide a template and integrate tracing tools to enhance the 

downloading of data in the cloud providers. The trace 

downloading ensures that the required software development 

kit (SDK) and the application programming interface (API) 

are downloaded. Finally, the trace processing features are used 

to handle custom logic [21]. 

 

The figure 2 shows a step-by-step workflow in the SB. In 

Figure 2, the step-by-step workflow in the serverless 

benchmark is illustrated in conjunction with the command line 

interface. During the initialization phase, the serverless 

benchmark installs the required features. The login phase 

involves user authentication. The deployment phase involves 

the preparation of the serverless benchmark for deployment 

[19]. The deployment of the benchmark leads to the invocation 

step, followed by data tracing and downloading then the 

serverless benchmark analyzes the traces. Finally, the 

serverless benchmark initiates data cleanup.  
 

The first step is the initialization which involves the 

serverless benchmark- this involves the initialization of 

default configuration and packages that had been pre-

installed. When required, developers can use the initialization 

step to install custom packages [18]. However, developers 

should execute this step only if they do not see any change in 

the dependent packages.  
 

The second step is the log in whereby the serverless 

benchmark authenticates the users in the cloud platforms. This 

involves temporary storage of the credentials. For example, 

the Amazon Web Service (AWS) and the Azure login are 

supported with a single sign-on (SSO) out-of-box. This means 

users can log in to several applications with one set of 

credentials. 

However, since the credentials are supported out-of-box, 

they can be accessed by other unauthorized users. Therefore, 

during the serverless benchmarking process, the SSO ensures 

that the authentication process for users is streamlined. A 

perfect example of SSO would be once a user logs into Gmail, 

and the user is automatically authenticated into other Google 

services such as AdSense and Google Analytics [15]. Back to 

the serverless benchmarking activity in the second step, the 

Amazon Web Service credentials expire in twelve hours, 

while the Azure logins expire in 60 minutes. Therefore, 

serverless benchmarking should consider the login expiration 

of each application and perform the benchmarking process 

before the expiry of the session.  

 
The third step is the development which involves the 

deployment configuration of the benchmark application. 

However, the technologies used can lead to different 

configuration sessions. For example, the runtime can be 

different for different benchmark applications. Also, different 

infrastructures can lead to different run time. In step three, the 

serverless benchmark enables the developer to build Docker 

images, and container loading with variables [17].  

 
The fourth step is invocation, which involves the K6 

configuration- this is a default configuration file that allows a 

developer to edit or create a new file. The K6 configuration 

often overrides the configuration flag options. The fifth step is 

to trace downloading- this involves the standardization of the 

operation of download traces from the available cloud 

providers. The default implementation exists, but the 

differences in the instrumentation and application can force 

the users or developers to modify the downloading logic. For 

example, for the Amazon Web Service (AWS), developers 

unify the tracing data into a single JavaScript Object Notation 

(JSON) file, which is an effective way of transmitting data in 

web applications. For instance, the JSON file enables a user to 

send data from the server to the client. A user requires AWS 

X-Ray SDK to download X-Ray traces. This is because the 

AWS X-Ray SDK is used to fetch the JSON file. In the 

implementation of the Azure app, developers trace data 

through three categories- this is request, trace, and 

dependences [11]. Fetching data through Azure is 

implemented in various ways- this includes the Continuous 

Export and the representational state transfer (REST) API. 

While the web APIs rely on multiple communication and the 

JSON, REST APIs apply the hypertext transfer protocol 

(HTTP) to send and receive data.  

 
The fifth step is the traces processing which involves pre-

processing of data from step 4 (traces downloading). In step 5, 

the final trace breakdown is generated and extracted before 

being applied to analysis during post-experiments. The sixth 

step is the cleanup which involves the destruction of all the 

resources in the cloud platform.  
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4. Analysis of the Benchmarking Tools 
The reviewed studies show that the current serverless 

computing does not meet the required demand. For example, 

the run time is relatively low and the data volume requests are 

overwhelming. This calls upon software developers to 

consider more efficient avenues. For example, studies show 

the constraint of serverless computing in the manner that the 

lifetimes of the functions are limited and the hardware 

resources are not specialized. This means developers are 

gambling with serverless computing and benchmarking would 

help in improving the performance of these servers. Also, 

research indicates that the processing of data in serverless 

platforms is inefficient- this is attributed to the input-output 

problems that arise from the low network bandwidth and low 

Central Processing Unit (CPU) storage.  

 

In addition, research shows that wrong policies hinder the 

full adoption of serverless computing platforms. For example, 

the policies lead to the incorporation of request queuing that 

is inadequate. Consequently, several serverless application 

developers have resorted to the measurement of the 

performance of the serverless computing platforms. The 

performance measures include cold start latency [2], lifetime 

of the function [6], idle time reached before the server shuts 

down [7], and the usage of the Central Processing Unit [11]. 

However, since the experiments did not have control over 

other circumstances or variables, the results cannot be 

replicated and are therefore irrelevant in the benchmarking of 

the current serverless computing platforms.  

 

Furthermore, studies show that breadth is an issue of 

concern in the s computing platforms. For instance, the study 

in [1] examined the function images of up to 15MB, while the 

study in [13] went up to 230MB and found different results. 

Similarly, in [14], the researchers evaluated the delay in the 

image fetch function for images of up to 70MB and found a 

significant image delay in serverless bench. Moreover, there 

is a lack of depth for the analysis of the serverless bench inter-

function transmission latency [13]. In the previous studies, the 

payloads of up to 50KB are considered normal, which is 

inconsistent with other studies which considered normal 

payloads to be 1GB. [14]. 

 

In another experiment, the researchers explored cold 

latency, network, and CPU performance [2]. Researchers in 

[13] used a similar methodology but focused on tail latency, 

variability in the upload of images of various sizes, and 

serverless bench behavior. While the experiments were 

identical, the authors in [13] failed to replicate the same results 

as in [3], indicating that the previous studies are outdated. For 

example, the experiment in [17] showed an increase in the 

slowdown of CPU in Amazon Web Service (AWS) since the 

year 2018 [18]. The slowness of the CPU performance in the 

Amazon Web Service is attributed to the update in vendor 

policies. The outdated of some research papers in the 

serverless computing platforms is reflected in the tenancy of a 

virtual machine (VM), which is not currently applied because 

of the exclusion of the VM co-residency from the AWS. This 

means the vendors assigned only one function to the micro-

virtual machine [19].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Server-level overhead of FaaSProfiler [12] 
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The previous studies’ methodologies focused on end-to-

end issues. In [20], the function-as-a-service profiler (FaaS) is 

emphasized, which is an open-source. This means it is 

possible to perform a higher degree of introspection and 

interference with inter-function [8]. The studies also found 

consistent results concerning the cold starts in functions and 

slowdowns in containers.  

 

The Figure 3 illustrates the server-level overhead of 

FaaSProfiler. In Figure 3 above, the serverless benchmark 

shows inter-function interference, which negatively affects its 

performance. In addition, the figure under-performance of 

other parameters in the serverless benchmark. For example, 

there was a 35% decrease in the Inter-Process Communication 

(IPC),  a 6 times variation in the memory bandwidth due to the 

invocation pattern, a 20 times Managed Public Key 

Infrastructure (MPKI) for short functions, more than 10 times 

execution time in the cold start for the short functions, and up 

to 20 times slowdown in container performance [13].  

 

In [16], the researchers considered statistical accuracy 

like other studies that prioritized statistical soundness. For 

example, LANCET is a self-correcting tool used to measure 

latency [15]. LANCET employs statistical measuring 

techniques such as Pearson and Anderson Darling Test [16]. 

Other tools, such as the ServerlessBench [17], offer insights 

into how the developer can derive economic benefits from the 

serverless computing platform.  

 

The researchers in [13] used a micro-bench framework to 

examine the aspects of the function-as-a-service (FaaS) 

platform. However, a developer can adopt the BeFaaS which 

is specialized and has in-built benchmarks such as the IoT 

application and e-commerce. Another applicable framework 

is the SeBS, which includes image recognition engines. 

Nonetheless, the platforms that emphasize the use of visuals 

and the analysis of programming languages include the 

FaaSDom, which is built in and supports seven languages. 

However, since the FaaSDom outsources its latency from the 

wrk2, there is a compromise on the precision [15]. 

 

WRK2 is a concurrency model that distributes the number 

of connections evenly. This means the number of CPUs should 

equal the number of connections.  

 

For example, thread 1 is created for clients 0, 1, and 2. 

Thread 2 is created for clients 3, 4, and 5.  

 

In [13], the authors examined the benchmarking tools 

against their characteristics and summarized them as shown in 

the figure below.  

 

Figure 5 above shows the micro-benching contributions 

to the serverless computing platform. The ticks where the 

benchmarking tool is effective, while the x indicates where the 

benchmarking tool is ineffective.  
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The review of existing literature on the performance 

benchmarking of serverless computing platforms shows a lack 

of tail latency in most research papers. Also, the review of the 

literature shows that the experiments are too narrow and lack 

the statistical soundness to make informed decisions about the 

effectiveness of the benchmarking tools. In [13], the 

researchers analyzed tail latency on 99th percentile server 

latencies. The bursty behavior examined the workloads 

considered bursty, but the researchers did not consider the 

incidences of concurrent requests. The researchers also 

analyzed the image delay by examining the cold start 

performance. Finally, the study examined a function transfer 

to determine the transfer speeds in serverless computing 

platforms.  

 

In [8], they evaluated the performance of the serverless 

platforms of Amazon, Google, Microsoft, and IBM using a 

benchmarking test suite. The authors developed seven tests to 

benchmark the cloud serverless computing platforms- this 

includes (1) scalability, also known as latency and throughput, 

(2) memory, (3) CPU performance, (4) payload size, (5) 

programming language, (6) resource management and (7) the 

use of platform overhead. The researchers developed software 

that deployed the test code and concluded that the benchmark 

tools help developers identify the serverless aspects that need 

improvement.  

 

Analytical performance models can be used for 

benchmarking the performance of serverless computing 

platforms [13]. The primary purpose of these analytical 

models is to determine the strengths and weaknesses of the 

serverless computing platforms. For example, the developers 

can determine whether the serverless computing platform can 
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handle the volume of requests submitted or the time taken for 

a function to be executed. While a serverless computing 

platform cannot meet 100% of the strengths required, it can 

have enough tools to handle a peak in traffic. Furthermore, 

serverless computing platforms are flexible in the manner that 

their resources can increase to meet increased demand.  

 

The greatest strength of serverless computing platforms is 

the ability to detect the workload and deploy the required 

resources. This provides a better cost and performance for the 

user, unlike traditional cloud computing, which offers a fixed 

amount of space at a certain cost. The researchers also 

emphasized the need for users or developers to have extensive 

knowledge of serverless computing platforms to execute 

deployments effectively. The study showed that the analytical 

performance model can calculate the response time, chances 

of cold start, and the number of functions in a steady state.  

 

5. Summary of the Findings 
Cloud serverless computing is a growing technology that 

has not yet been embraced by a majority of cloud vendors, 

developers, or users. The serverless computing platform 

works on the idea that the developers do not need to pay for 

the cloud computing services they do not use. For example, 

the purchase of the bandwidth that one does not use is not only 

a waste of resources but also a waste of time. Therefore, the 

cloud serverless computing platform offers developers 

solutions by handling the backend services depending on the 

resources needed. This means developers will pay only for the 

resources used. This means the payment for the serverless 

computing platform will vary depending on the needs of the 

users. For example, in case there is a traffic increase to a web 

application, the serverless cloud computing platform will 

adjust to accommodate the traffic rather than shouting down 

as is the case of the cloud server computing platforms.  

 

The advantages of cloud serverless computing platforms 

include: 1) cost efficiency- this means the developer or 

company will pay for the resources used instead of the 

resources purchased, as is the case for the traditional cloud 

server computing platforms. Also, the developer saves the cost 

of hosting the backend because there is no payment for the 

server space that is idle. 2) the cloud serverless computing 

platform has operational efficiency by simplifying him 

management of tasks. 3) The cloud serverless computing 

platforms are scalable. The disadvantages of serverless 

computing, however, include performance issues whereby a 

function enters a dormant state when it is not used for a certain 

period. Another disadvantage of serverless cloud computing 

includes limited flexibility and control due to the used 

infrastructure, and Operating System. 

 

The review of literature addressed the problems or 

disadvantages of cloud serverless computing platforms by use 

of benchmarking tools. Several benchmarking tools were 

identified. This includes micro-benchmarking and application 

benchmarking tools [12]. Micro-benchmarking tools focus on 

serverless attributes such as the CPU, memory, disk I/O, and 

network performance [13]. The application benchmarkers 

include the BeFaaS.  

 

6. Conclusion 
The analysis of benchmarking tools shows that serverless 

computing is far from meeting the required demand. While 

serverless computing is cost-effective, it is replete with 

performance problems which include low run time and 

overwhelming data volume requests. Moreover, the I/O 

problems contribute to the inefficiency in the processing of 

data by serverless computing platforms. However, the 

ServeerlessBench in [13] showed that the cloud serverless 

computing platform is effective due to the reduced tail latency, 

enhanced bursty behavior whereby the server can handle 500 

requests in a millisecond, a maximum image fetch of 230MB, 

and the function transfer of 1GB. The findings indicate that 

for developers to optimize the performance of serverless 

computing platforms, they must have the technical knowledge 

of the architecture and the performance benchmarks required 

to test the reliability of the platform. The serverless computing 

platform is the future of computing. It is only a matter of time 

before all developers will migrate from the traditional cloud 

servers to the serverless computing framework.  
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